JICE Digital Products

 
Thumbnail Name Price Add to Cart Button Tags
Usability Evaluation of Main Function on Three Mobile Banking Application Usability Evaluation of Main Function on Three Mobile Banking Application $15.00

Alyaa Putri Nugraha. Danu Hadi Syaifullah, Maya Arlini Puspasari

The Author field can not be Empty

Industrial Engineering Department, University of Indonesia

The Institution field can't be Empty

Vol.4, Issue 3

Volume and Issue can't be empty

230-236

The Page Numbers field can't be Empty

17-12-2018

Publication Date field can't be Empty
spinner

Abstract:  E-banking or electronic banking is used to facilitate the bank customers when conducting financial transaction in easy and convinient way. As one of the e-banking form, Mobile banking (m-banking) is a banking service that allows its customers to conduct financial transactions in real time using mobile devices such as smartphones or tablets. Although there is an increasing number of mobile banking service users every year in Indonesia, the utilization of the actual mobile banking apps is still very low compared to other country in Asia. One of the problems that is often encountered by mobile banking’s customers is the aspect of trust that can be influenced by interface and usability of mobile banking applications. Therefore, in order to achieve effective interaction between human-computers with minimal effort, various aspects of usability need to be the main focus in developing an application to support the effectiveness of human-computer interaction so that the initial goal of creating mobile banking to facilitate customer banking transactions can be achieved. Using four criteria of usability mesurement set by ISO, this research aim to evaluate three m-banking application from the largest bank in Indonesia which are Mandiri Mobile, BNI Mobile, and BCA Mobile. Evaluation and analysis from this research shows that BNI Mobile has the best usability among the other two application. Overall,…

An l1-l1-norm minimization solution using ADMM with FISTA An l1-l1-norm minimization solution using ADMM with FISTA $15.00

Tsugumi Oishi, Yoshimitsu Kuroki

The Author field can not be Empty

National Institute of Technology, Kurume College

The Institution field can't be Empty

Vol.4, Issue 3

Volume and Issue can't be empty

237-241

The Page Numbers field can't be Empty

17-12-2018

Publication Date field can't be Empty
spinner

Abstract:  This paper discusses compressed sensing which reconstructs original sparse signal from observed data. Our approach formulates the weighted sum of l1-norm error and l1-norm regularization terms, and applies Alternating Direction Method of Multipliers (ADMM) to solve it. Many works employ ADMM for the l1-l1-norm minimization problems, where ADMM obtains solutions in an iterative fashion for the problems formed as an augmented Lagrangian. The ADMM process is divided into three steps: an error minimization, a coefficient-norm minimization, and a dual variable update of an augmented  Lagrangian. However, the coefficient-minimization step is not clear and replaced with an approximation. Our contribution is to adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) for the minimization step and achieves faster implementation than a conventional method. 

Keywords: Compressed sensing; First Iterative Shrinkage-Thresholding Algorithm (FISTA); Alternating Direction Method of Multipliers (ADMM)

Coefficient Constraint LIC with ADMM Coefficient Constraint LIC with ADMM $15.00

Shohei Kubota, Ryoichiro Yoshida, and Yoshimitsu Kuroki

The Author field can not be Empty

National Institute of Technology, Kurume College

The Institution field can't be Empty

Vol.4, Issue 3

Volume and Issue can't be empty

242-246

The Page Numbers field can't be Empty

17-12-2018

Publication Date field can't be Empty
spinner

Abstract: Local Intensity Compensation (LIC) is an intra-frame motion compensation for video coding, and was a candidate for HEVC. LIC compensates a target block using motion vectors of reference blocks and linear coefficients of the blocks; thus, from a view point of data compression, not only compensation error but also the range of the motion vectors and coefficients should be as small as possible. Our previous work employs Alternating Direction Method of Multipliers (ADMM) to obtain reference blocks and their coefficients of LIC. This paper proposes to limit the range of coefficients, and experimental results tell us that the proposed method shows almost equivalent compensation accuracy to the conventional method.

  Keywords: Convex Optimization; Alternating Direction Method of Multiply;  norm regularization
User Experience Evaluation on the Cryptocurrency Website by Trust Aspect User Experience Evaluation on the Cryptocurrency Website by Trust Aspect $15.00

Bagus A. Ramadhan, Erlinda Muslim, Billy M. Iqbal, Boy Nurtjahyo

The Author field can not be Empty

Faculty of Engineering, Universitas Indonesia

The Institution field can't be Empty

Vol.4, Issue 3

Volume and Issue can't be empty

247-253

The Page Numbers field can't be Empty

17-12-2018

Publication Date field can't be Empty
spinner

Abstract:  A portal into the public ledger cryptocurrency makes a competition of the best web sites and easily trusted by the public. These are believed to constitute a measurable dimensions of User Experience (UX). This study aims to evaluate the user experience of the use of the three web sites most frequently accessed cryptocurrency from Indonesia. The evaluation conducted aimed at knowing the factors that influence user trust through the design of the interface and can be installed on a new design. Methods include Performance Metrics, Post-Task Rating, Post-Session Rating, and Experiential Overview and eye-tracking device. Based on the results of research, in the overall evaluation of the web site, the web site is the most superior of Indodax. The results of the evaluation are then applied on a new design using the software Invision and examined again to see a comparison of the respondent at the time of first use. The result of the research is the assessment, recommendations, and design the look of the web site cryptocurrency are trustworthy based on user experience

 

Keywords: Cognitive Ergonomics, Human-Computer Interaction, User Experience, Cryptocurrency, Website, Emotional Design, Online Design

Linear Active Disturbance Rejection Control Using Plant Inverse Property Linear Active Disturbance Rejection Control Using Plant Inverse Property $15.00

Tetsunori Koga and Ryo Tanaka

The Author field can not be Empty

Department of Control and Information Systems Engineering, National Institute of Technology, Kurume College

The Institution field can't be Empty

Vol.4 Issue 3

Volume and Issue can't be empty

254-259

The Page Numbers field can't be Empty

17-12-2018

Publication Date field can't be Empty
spinner

Abstract:  In this paper, we propose a control law in a linear active disturbance rejection control (LADRC) for removal of ramp disturbance. We use plant inverse characteristics as a control law. We calculate the steady-state error of the conventional method and that of the proposed method using the final-value theorem. In a conventional and a proposed LADRC, each plant output has no steady-state error when a step signal is assumed as a plant input-side disturbance. However, in a conventional LADRC, the plant output has a steady-state error when a ramp signal is assumed as a plant input-side disturbance. On the other hand, in a proposed method, the plant output has no steady-state error. In comparison with a conventional method, the proposed method has almost the same control performance for a plant with a modeling error.

Keywords: Active disturbance rejection control. Extended state observer. Steady-state error. Plant inverse characteristics.
Detection of Black Hole Attack and Performance Analysis of AODV Protocol in MANET (Mobile Ad Hoc Network) Detection of Black Hole Attack and Performance Analysis of AODV Protocol in MANET (Mobile Ad Hoc Network) $15.00

Tahmina Akter, Mohammad Elias Hossain and Md. Imran Hossain

The Author field can not be Empty

Information and Communication Technology, Comilla University, Bangladesh

The Institution field can't be Empty

Volume 4, Issue 2

Volume and Issue can't be empty

223-229

The Page Numbers field can't be Empty

28-06-2018

Publication Date field can't be Empty
spinner
Abstract: A Mobile Ad hoc Network is an aggregation of mobile terminal that form a volatile network with wireless interfaces. Mobile Ad Hoc Network has no central administration. MANET is more vulnerable to attacks than wired network, as there is no central management and no clear defense mechanism. Black Hole Attack is one of the attacks against network integrity in MANET.  In this type of attack all data packets are absorbed by Black Hole node. There are lot of techniques to eliminate the black hole attack on AODV protocol in MANET. In this paper a solution named Black Hole Detection System is used for the detection of Black Hole attack on AODV protocol in MANET. The Black Hole Detection System considers the first route reply as the response from malicious node and deletes it, then the second one is chosen using the route reply saving mechanism as it comes from the destination node. We use NS-2.35 for the simulation and compare the result of AODV and BDS solution under Black Hole attack.  The BDS solution against Black hole node has high packet delivery ratio as compared to the AODV protocol under Black hole attack and it’s about 46.7%.The solution  minimize data loss, reduces the average Jitter by 5% and increases the Throughput. Keywords: MANET, AODV, blackholeAODV, bdsAODV
Accuracy Evaluation for Mental Health Indicator Based on Vocal Analysis in Noisy Environments Accuracy Evaluation for Mental Health Indicator Based on Vocal Analysis in Noisy Environments $15.00

Masakazu Higuchi, Shuji Shinohara, Mitsuteru Nakamura, Yasuhiro Omiya, Naoki Hagiwara, Takeshi Takano, Shunji Mitsuyoshi, and Shinichi Tokuno

The Author field can not be Empty

The University of Tokyo, Japan

The Institution field can't be Empty

Vol. 4, Issue 1

Volume and Issue can't be empty

217-222

The Page Numbers field can't be Empty

05-04-2018

Publication Date field can't be Empty
spinner
Abstract: Mental health care is one of the important challenges in our modern stressful society. The authors proposed a method for measuring mental health based on the quality of the patient’s voice, and implemented a system that monitors the state of mental health based on voice during a phone conversation via smartphone. However, there has been little consideration of the analysis of mental health using voices in a noisy environment thus far. Therefore, this study investigated the impact of noise on the mental health indicator based on vocal analysis. The results showed that the mental health level was judged to be low when the analyzed voice included noise. The study also revealed that a decreased precision in the detection of utterances had a significant impact on mental health analysis. Keywords: Mental health care; noisy environment; vocal analysis
Visualization of Individual Feature Amount Appearing in Daily Performance Based on Electrostatic Induction Visualization of Individual Feature Amount Appearing in Daily Performance Based on Electrostatic Induction $15.00

Koichi KURITA

The Author field can not be Empty

Kindai University, Japan

The Institution field can't be Empty

Vol. 4, Issue 1

Volume and Issue can't be empty

211-216

The Page Numbers field can't be Empty

05-04-2018

Publication Date field can't be Empty
spinner
Abstract: In this paper, a new technique to measure daily human body motion without using cameras and video images is presented. The change in the electric potential of the human body that is caused by the daily performance induces an electrostatic induction current in the electrode placed at a distance of a few meters from the human body. Using this technology, I have developed an effective non-contact technique for the detection of human daily performance by detecting the change in this human-generated body charge. This technique based on the detection of an electrostatic induction current of the order of approximately sub-picoamperes flowing through an electrode that is placed at a distance of 5 m from the subject. It is shown that the characteristics of the individual are included in walking motion, sitting on a chair and retiring motion. This technique effectively explains the behavior of the waveform of the electrostatic induction current flowing through a given measurement electrode through a capacitance model of the human body. Keywords: Daily performance, Electrostatic induction current, Non-contact measurement, Wavelet transform
Regional Distance-based k-NN Classification Regional Distance-based k-NN Classification $15.00

Swe Swe Aung, Itaru Nagayama, Shiro Tamaki

The Author field can not be Empty

The University of the Ryukyus

The Institution field can't be Empty

Vol. 4, Issue 1

Volume and Issue can't be empty

203-210

The Page Numbers field can't be Empty

05-04-2018

Publication Date field can't be Empty
spinner
Abstract: The k-Nearest Neighbor (k-NN) is very simple and powerful approach to conceptually approximate real-valued or discrete-valued target function. Many researchers have recently approved that K-NN is a high-prediction accuracy algorithm for a variety of real-world systems using many different types of datasets. However, as we know, k-NN is a type of lazy learning algorithms as it has to compare to each of stored training examples for each observed instance. Besides, the prediction accuracy of k-NN is under the influence of K values. Mostly, the higher K values make the algorithm yield lower prediction accuracy according to our experiments. For these issues, this paper focuses on two properties that are to upgrade the classification accuracy by introducing Regional Distance-based k-NN (RD-kNN) and to speed up the processing time performance of k-NN by applying multi-threading approach. For the experiments, we used the real data sets (wine, iris, heart stalog, breast cancer, and breast tissue) from UCI machine learning repository. According to our test cases and simulations carried out, it was also experimentally confirmed that the new approach, RD-kNN, has a better performance than classical kNN. Keywords: k-NN, RD-kNN
A Stress Analysis Method using Poincaré Plot and Complex Correlation Measures for Wearable Health Devices A Stress Analysis Method using Poincaré Plot and Complex Correlation Measures for Wearable Health Devices $15.00

Nan Bu

The Author field can not be Empty

National Institute of Technology, Kumamoto College, Japan

The Institution field can't be Empty

Vol. 4, Issue 1

Volume and Issue can't be empty

196-202

The Page Numbers field can't be Empty

05-04-2018

Publication Date field can't be Empty
spinner
Abstract: This paper attempts to develop a stress analysis method using short-term heart rate (HR) data obtained with wearable health devices. Evaluation method for stress analysis is very important for disease prevention and health promotion. Wearable health devices, such as smart phones and wristband fitness watches, are capable of measuring HR data using photoplethysmography technologies. In recent years, many new commodity devices have been issued and been used to obtain healthcare information, including HR data, in people's everyday life. However, since HR data of wearable devices are recorded with uneven and relatively long sampling intervals, which are constrained by their hardware issues, it is difficult to apply traditional spectral analysis methods for the HR data. The proposed method evaluates HR data using a non-linear technique, Poincaré plot. As the number of points in a plot is restricted by the limited sampling features of wearable devices, this paper applies two stress analysis indices that are based on complex correlation measures of time-varying characteristics in Poincaré plots. On the other hand, the proposed method can investigate dynamic changes in stress levels of short-term (e.g., one minute) analysis duration. Mental stress induction experiments were conducted with nine subjects to validate the proposed method. Keywords: Stress analysis; Wearable health devices; Heart rate variability (HRV); Poincaré plot; Complex…
Detection of Genes Patterns with an Enhanced Partitioning-Based DBSCAN Algorithm Detection of Genes Patterns with an Enhanced Partitioning-Based DBSCAN Algorithm $15.00

Nwayyin Najat Mohammed,Micheal Cawthorne and Adnan Mohsin Abdulazeez

The Author field can not be Empty

Zakho University, Iraq

The Institution field can't be Empty

Vol. 4, Issue 1

Volume and Issue can't be empty

188-195

The Page Numbers field can't be Empty

05-04-2018

Publication Date field can't be Empty
spinner
Abstract: Microarray datasets are enriched with numerous unknown gene expression patterns  that may have significant biological meaning. Detecting well-separated gene expression patterns is a critical task in microarray data analysis. The density-based spatial clustering DBSCAN  algorithm has been used to detect patterns with different shapes and sizes in many applications. However, the DBSCAN algorithm is time-consuming when used on big datasets, and microarray datasets are considered as big and complex datasets. Therefore, in this study, we modified the DBSCAN algorithm by combining it with a partitioning around medoids algorithm based on normalized and weighted Mahalanobis distance (NWM). The developed algorithm (NWM_PDBSCAN) was tested on selected microarray expression datasets, which were pre-processed prior to analysis. The results revealed an optimal cluster solution with different shapes and sizes. We further reduced the dataset sizes using a random sampling technique to enhance the performance of the DBSCAN algorithm. The proposed NWM_PDBSCAN algorithm performed ideally, and was evaluated using Dunn’s validity index. Keywords: Microarray data; Partitioning around medoids; DBSCAN; Normalized weighted Mahalanobis distance; Validity index; Pre-processing; Sampling; Number of clusters
Deep Learning based Handwritten Digit Recognition Deep Learning based Handwritten Digit Recognition $15.00

Yawei Hou, Huailin Zhao

The Author field can not be Empty

Shanghai Institute of Technology, China

The Institution field can't be Empty

Vol.3, Issue 5

Volume and Issue can't be empty

184-187

The Page Numbers field can't be Empty

29-12-2017

Publication Date field can't be Empty
spinner
Abstract: Neural network and depth learning have been widely used in the field of image processing. Good recognition results are often required for complex network models. But the complex network model makes training difficult and takes a long time. In order to obtain a higher recognition rate with a simple model, the BP neural network and the convolutional neural network are studied separately and verified on the MNIST data set. In order to improve the recognition results further, a combined depth network is proposed and validated on the MNIST dataset. The experimental results show that the recognition effect of the combined depth network is obviously better than that of a single network. A more accurate recognition result is achieved by the combined network.
Water Bloom Warning Model Based on Random Forest Water Bloom Warning Model Based on Random Forest $15.00

Yunxiang Liu and Hao Wu

The Author field can not be Empty

Shanghai Institute of Technology, Shanghai, China

The Institution field can't be Empty

Vol.3, Issue 5

Volume and Issue can't be empty

178-182

The Page Numbers field can't be Empty

29-12-2017

Publication Date field can't be Empty
spinner
Abstract: Based on the random forest classification algorithm, a warning model of water bloom is proposed. Using the collected data, Select the water quality, meteorological factors which like Chlorophyll a (Chl-a), water temperature (T), PH, nitrogen and phosphorus ratio (TN:TP), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), dissolved oxygen Light (E) and so on as the impact factor and use them establish a warning model for Water bloom. And compared with the prediction accuracy of neural network model and SVM model. The results show that the water bloom warning model is established by using stochastic forest classification algorithm, the prediction accuracy is slightly higher than other algorithms. And the random forest algorithm has the characteristics of high robustness, China good performance, strong practicability can effectively carry out water bloom early warning.
EKF based Sliding Mode Control for a Quadrotor Attitude Stabilization EKF based Sliding Mode Control for a Quadrotor Attitude Stabilization $15.00

Hyungkwan Kwon, Kyunghyun Lee and Kwanho You

The Author field can not be Empty

Sungkyunkwan University, Korea

The Institution field can't be Empty

Vol.3, Issue 5

Volume and Issue can't be empty

174-177

The Page Numbers field can't be Empty

29-12-2017

Publication Date field can't be Empty
spinner
Abstract: In recent years, the interest in unmanned aerial vehicles (UAVs) has been increasing around the world. These vehicles are used in various applications from military operations to civilian tasks. Quadrotor, also called as a quadcopter, is one of the different types of UAVs. Quadrotor can fly more stable than helicopter and the flight control is more convenient. In UAVs, the most basic and salient point is the attitude control for stability. This paper estimates quadrotor’s attitude by extended Kalman filter (EKF) and presents the design procedure of a sliding mode control (SMC) to focus on stabilization. The performance and effectiveness of the proposed system are verified through a simulation study.
Study of detection algorithm of pedestrians by image analysis with a crossing request when gazing at a pedestrian crossing signal Study of detection algorithm of pedestrians by image analysis with a crossing request when gazing at a pedestrian crossing signal $15.00

Akira Tsuji, Naoaki Itakura, Tota Mizuno and Shogo Matsuno

The Author field can not be Empty

The University of Electro-Communications

The Institution field can't be Empty

Vol.3 , Issue 5

Volume and Issue can't be empty

167-173

The Page Numbers field can't be Empty

29-12-2017

Publication Date field can't be Empty
spinner
Abstract: Despite the advancement of information and transportation systems, inconvenient pedestrian crossing buttons remain common. In accordance with intelligent transportation systems (ITS), it is necessary to improve pedestrian crossing systems. Therefore, in this study, the proposed system adopts signal gaze, which is more natural compared to pressing a pedestrian crossing button, as a crossing request. A compact camera is inserted in a traffic light to view the other side of the crosswalk. The image data is analyzed in real time to identify all people who have a crossing request. An algorithm with three detectors using Haar-like feature quantities was developed and an evaluation experiment was conducted, considering three conditions: daytime, nighttime, and shade. The detection rate of crossing requests was 100% within 5 s. Although the detection rate was extremely high, there was a problem of incorrectly detecting non-humans. Therefore, in this research, we evaluated the system when detecting non-humans in order to determine the causes. As a result, it became clear that the detection rate changes rapidly depending on the waiting time for a traffic light and also when crossing the crosswalk; however, the system continues to detect the incorrectly detected background.
 

© 2017 Applied Science and Computer Science Publications : Website by Tokyo Web Designs.