Effect of the random forest with recursive feature elimination for breast cancer classification using a WDBC dataset

Open Access

Abstract:  A breast cancer is the most dangerous disease of the death cause among aged 40-55 women. We need a computer aided diagnosis system for breast cancer classification. In the previous study, the random forest which is known as an ensemble learning method was reported to be one of promising classifiers for classifying breast cancers using a Wisconsin Diagnostic Breast Cancer(WDBC) dataset. This paper presents the effect of the random forest with a recursive feature elimination for breast cancer classification on the WDBC dataset, compared to the state of the art ensemble learning techniques, such as XGBoost and LightGBM.